Kinetic resolution of amines by acylation using 3-diacylaminoquinazolin-4(3H)-ones

Abdullah G. Al-Sehemi, Robert S. Atkinson, John Fawcett and David R. Russell
Department of Chemistry, Leicester University, Leicester, UK LE1 7RH. E-mail: vow@le.ac.uk

Received (in Cambridge) 4th October 1999, Accepted 16th November 1999

Four diastereoisomeric 3-diacylaminoquinazolinones 8a-d have been separated and identified by X-ray structure determinations on three of them: their stoichiometric reactions with α-phenylethylamine and with 2 -methylpiperidine (2 equiv. of amine) gave the corresponding N -(2-acetoxypropanoyl)amine and unreacted amine in high diastereomeric/enantiomeric excess.

3-Diacylaminoquinazolinones (DAQs), e.g. 1, are highly selective acylating agents for primary amines in the presence of secondary amines and for the less hindered of two secondary amines. ${ }^{1}$ Recently the N, N-diacetamide $\mathbf{2}$ has been claimed to be even more chemoselective than DAQ 1 as an acetylating agent: a $1: 1$ mixture of pyrrolidine and piperidine $\left(\Delta \mathrm{p} K_{\mathrm{a}}=0.01\right)$ reacts with 2 to give a 15:1 ratio of the corresponding N acetylated amines. ${ }^{2}$

The DAQs $\mathbf{3}, \mathbf{4}$ and $\mathbf{5}$ were available to us by acetylation of the corresponding 3 -aminoquinazolinones ${ }^{3}$ and, when reacted with a mixture of pyrrolidine and piperidine (1 equiv. each) at $0{ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the ratios of the corresponding amides shown in Scheme 1. Unexpectedly, the chemoselectivity increases as the substituent R on the chiral centre decreases in size from $\mathrm{Bu}^{\mathrm{t}} \rightarrow$ Me with a 20:1 ratio for methyl. \dagger

Since DAQs 3,4 and 5 are enantiopure we were particularly interested in a greater potential advantage which their use offered over that of e.g. 2, namely as enantioselective acetylating agents. ${ }^{4}$ However, reaction of DAQ 3 (1 equiv.) with racemic 2 -methylpiperidine (2 equiv.) gave a sample of recovered amine having zero optical rotation and hence there is no kinetic resolution in this acetylation
For 3-aminoquinazolinones N, N-disubstituted with different acyl groups, we have previously shown that the $N-N$ bond is a chiral axis: in DAQ 6 the presence of two chiral elements gives rise to diastereoisomers with a barrier $\Delta G^{\#}=121 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for their interconversion by rotation around the $N-N$ bond. ${ }^{4}$

Successive acylation of enantiopure 3-aminoquinazolinone 7^{3} with (S)-2-acetoxypropanoyl chloride and isobutanoyl chlo-

Scheme 1
ride (Scheme 2) gave four DAQ diastereoisomers 8a-d in order of their elution on chromatography (see below). The major diastereoisomer $\mathbf{8 b}$ was separated by crystallisation (35%) after flash chromatography to remove unreacted mono-acylquinazolinone (MAQ) and pure samples of the other three, 8a (5\%), 8c (7%) and 8d (26%), were obtained by separation using a chromatotron.
X-Ray crystal structure determinations of DAQs $\mathbf{8 b}$ and $\mathbf{8 c}$ (Fig. 1) showed them to have the expected (S)-configuration at their α-acetoxypropanoyl chiral centres but different configurations at their $N-N$ chiral axes. \ddagger Heating ($\left.\mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}, 42 \mathrm{~h}\right)$ interconverted $\mathbf{8 b}$ and $\mathbf{8 c}$ and gave a 5:4 ratio respectively at equilibrium, presumably as a result of rotation around the $N-N$ bond: no interconversion with $\mathbf{8 a}$ or $8 \mathbf{d}$ occurred.

Diastereoisomers 8a and 8d arise from epimerisation at the α-acetoxypropanoyl centre as shown by the (R)-configuration in the X-ray crystal structure of 8d (Fig. 1). \ddagger Interconversion of 8a and $\mathbf{8 d}$ by heating $\left(\mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}, 13 \mathrm{~h}\right)$ gave a $6: 1$ ratio at equilibrium, respectively: no interconversion with $\mathbf{8 b}$ and $\mathbf{8 c}$ occurred in this equilibrium.
Although in their crystal structures DAQ 8b-d all have the usual ${ }^{4}$ exolendo conformation for their imides, $\mathbf{8 b}$ and $\mathbf{8 c}$ have their α-acetoxypropanoyl groups endo and the isobutanoyl group exo whereas $8 \mathbf{d}$ has the positions of these two groups reversed.
We find that these DAQs 8a-d are enantioselective acylating agents for racemic amines. Thus DAQ 8c (1 equiv.) reacts with α-phenylethylamine (2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $5{ }^{\circ} \mathrm{C}$ to give ($2 R, 2^{\prime} S$)- N-(-2-acetoxypropanoyl)- α-phenylethylamine [77\% based on $(R)-\alpha$-phenylethylamine, 88% de] by NMR comparison with authentic samples of both diastereoisomers: the recovered S enantiomer of the amine [90% based on (S)- $\alpha-$ phenylethylamine] was of 91% ee from its specific rotation (Scheme 3)

Scheme 2

Fig. 1 Molecular structures of $(a) \mathbf{8 b}$, (b) $\mathbf{8 c}$ and (c) $\mathbf{8 d}$ showing atom labelling schemes and 30% probability displacement parameters. H atoms at chiral centres are shown with dashed bonds, all other H atoms are omitted for clarity.

Scheme 3
Reaction of DAQ 8c (1 equiv.) with racemic 2-methylpiperidine 10 (2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $5{ }^{\circ} \mathrm{C}$ for 24 h gave, after chromatography, monoacylquinazolinone (MAQ) 11 (77\%) and ($2 S, 2^{\prime} S$)-1-(2^{\prime}-acetoxypropanoyl)-2-methylpiperidine 9a (79%) (Scheme 3) whose diastereopurity (de) as measured by NMR spectroscopy was 95%. The unreacted 2-methylpiperidine enantiomer was recovered from the crude reaction mixture by extraction with $\mathrm{HCl}(2 \mathrm{M})$ and derivatised by reaction with (S)-2-acetoxypropanoyl chloride to give $\mathbf{9 b}$ (81%) of 89% de: at 400 MHz and $50^{\circ} \mathrm{C}$ the OCOCH_{3} signals of diastereoisomers 9a and $\mathbf{9 b}$ are well separated.§

Since DAQ 8b was recovered unchanged when re-subjected to the conditions of the second acylation in Scheme 2, it appears that epimerisation at the 2 -acetoxypropanoyl chiral centre
occurs in the second acylation step.II An alternative, more stereoselective route to these DAQs was to carry out the second acylation using the lithium salt of the MAQ. Thus reaction of the lithium salt of MAQ 11 with (S)-2-acetoxypropanoyl chloride gave DAQ 8c (71\%) and 8a (8\%) (based on recovered starting material), i.e. with less epimerisation than previously.

Kinetic resolution is usually carried out in the presence of excess of the substrate to maximise enantiopurity in its derivatised enantiomer. Even under the most testing conditions of stoichiometry as in Scheme 3, DAQ 8c delivers both derivatised and unreacted enantiomers of the substrate with high enantioselectivity.

We thank the Ministry of Education, Saudi Arabia for funding (to A. G. Al-S).

Notes and references

\dagger This increase may be related to the preference for a defined conformation around the $\mathrm{C}-\mathrm{OSi}$ bond in the (Q) 2-substituent in $\mathbf{3}$ but not in $\mathbf{4}$ or $\mathbf{5}$ (see R. S. Atkinson, M. P. Coogan and I. S. T. Lochrie, Tetrahedron Lett., 1996, 37, 5179.
\ddagger Crystal data for $\mathbf{8 b}$: $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}, \mathrm{M}=531.72$, orthorhombic, space group $P 2{ }_{1} 2_{1} 2_{1}, a=10.146(1), b=13.296(2), c=22.618(3) \AA, V=$ $3051.4(7) \AA^{3}, Z=4, \mu(\mathrm{Mo}-\mathrm{Ka})=0.118 \mathrm{~mm}^{-1}, 3845$ reflections measured, 3639 unique ($R_{\mathrm{int}}=0.013$) which were all used in calculations. Final $R_{1}=$ 0.052 and $w R_{2}=0.114$ (all data). For 8 c : $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}, M=531.72$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, a=9.391(2), b=13.554(6), c=$ 23.908(13) $\AA, V=3043(2) \AA^{3}, Z=4, \mu(\mathrm{Mo}-\mathrm{Ka})=0.118 \mathrm{~mm}^{-1}, 3756$ reflections measured, 3592 unique ($R_{\mathrm{int}}=0.035$) which were all used in calculations. Final $R_{1}=0.102$ and $w R_{2}=0.309$ (all data). For 8d: $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}, M=531.72$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, a=$ 12.152(9), $b=13.170(7), c=18.293(9) \AA, V=2928(3) \AA^{3}, Z=4, \mu($ Mo$\mathrm{Ka})=0.118 \mathrm{~mm}^{-1}, 3666$ reflections measured, 3455 unique ($R_{\text {int }}=0.155$) which were all used in calculations. Final $R_{1}=0.044$ and $w R_{2}=0.099$ (all data). Data were measured on a Siemens P4 diffractometer at 190 K using graphite monochromated Mo-Ka radiation ($\lambda=0.7107 \AA$) using an ω-scan technique. Three standard reflections monitored every 100 scans showed no significant variation in intensity, the reflections were corrected for Lorentz and polarisation effects. The structures were solved by direct methods and refined by full-matrix least-squares on F^{2}. The absolute configurations of the compounds were established by the known configuration at the silyloxy substituted carbon atom. All examined crystals of 8c diffracted weakly; to preserve an observed data to variable ratio of $6: 1$ the 13 most closely isotropic atoms were constrained to be isotropic. All hydrogen atoms were included in calculated positions ($\mathrm{C}-\mathrm{H}=0.96 \AA$) using a riding model. CCDC 182/1486. See http://www.rsc.org/suppdata/cc/a9/a907970j/ for crystallographic data in .cif format.
\S A mixture of amide diastereoisomers 9 a and 9 b was prepared by reaction of (S)-2-acetoxypropanoyl chloride with racemic 2-methylpiperidine. An authentic sample of amide $\mathbf{9 b}$ was prepared from (R)-2-methylpiperidine, $[\alpha]_{\mathrm{D}}(\mathrm{HCl}$ salt) 8.9 (c 2, EtOH), itself prepared from the racemic amine by resolution using (R)-mandelic acid.
If Significantly, the MAQ recovered from the reaction in Scheme 2 was also found to be a mixture of two diastereoisomers, epimeric at the 2-acetoxypropanoyl chiral centre.

1 R. S. Atkinson, E. Barker and M. J. Sutcliffe, Chem. Commun., 1996, 105.

2 Y. Murakami, K. Kendo, K. Miki, Y. Akiyama, T. Watanabe and Y. Yokoyama, Tetrahedron Lett., 1997, 38, 3751.
3 R. S. Atkinson, A. P. Ayscough, W. T. Gattrell and T. M. Raynham, J. Chem. Soc., Perkin Trans. 1, 1998, 2783.

4 R. S. Atkinson, E. Barker, P. J. Edwards and G. A. Thomson, J. Chem. Soc., Perkin Trans. 1, 1996, 1047.

